Investigation of interocular blur suppression using luminance-modulated and contrast-modulated noise stimuli.

نویسندگان

  • Akash S Chima
  • Monika A Formankiewicz
  • Sarah J Waugh
چکیده

Presenting two sufficiently dissimilar images, one to each eye, may result in interocular suppression. The present study measured interocular suppression depth and extent in binocularly normal participants when blurring one eye only with varying dioptric lens powers (+0.5, +1, +2, and +4 D). Visual stimuli consisted of eight concentric rings of alternate polarity, divisible into eight sectors, within the central circular 24° visual field. Binocular "ring" stimuli therefore consisted of 64 individually testable dichoptic sectors. Using a two-alternative forced choice paradigm with a staircase procedure, signal strength of each dichoptic sector in the blurred eye was adjusted to perceptually match that of the surrounding ring from the nonblurred eye, determining the point of subjective equality. Rings were defined by differences in luminance (L), luminance-modulated noise (LM), or contrast-modulated noise (CM). Suppression depth was similar irrespective of sector location within the visual field and increased with increasing difference in interocular blur. Adding dynamic noise (LM vs. L stimuli) reduced the effect of blur on measured suppression depth. Significantly deeper suppression was measured for CM than for LM stimuli, both created using dynamic noise, the difference increasing at higher levels of interocular blur. As binocularity is disrupted with interocular blur, this result suggests that CM envelope combination may be processed by later mechanisms receiving binocular input than those required for the processing of LM stimuli. Differences in suppression depth between LM and CM stimuli could not be attributed to differences in spatial summation properties, stimulus visibility, noise modulation, or differential effects on blur discriminability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binocular Combination of Second-Order Stimuli

Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in ...

متن کامل

Same calculation efficiency but different internal noise for luminance- and contrast-modulated stimuli detection.

There is no consensus on whether luminance-modulated (LM) and contrast-modulated (CM) stimuli are processed by common or separate mechanisms. To investigate this, the sensitivity variations to these stimuli are generally compared as a function of different parameters (e.g., sensitivity as a function of the spatial or temporal window sizes) and similar properties have been observed. The present ...

متن کامل

Development of saccadic suppression in children.

We measured saccadic suppression in adolescent children and young adults using spatially curtailed low spatial frequency stimuli. For both groups, sensitivity for color-modulated stimuli was unchanged during saccades. Sensitivity for luminance-modulated stimuli was greatly reduced during saccades in both groups but far more for adolescents than for young adults. Adults' suppression was on avera...

متن کامل

First-order motion from contrast modulated noise?

The class of microbalanced motion stimuli is thought to contain no systematic directional biases in motion energy. The fact that we can see motion in such stimuli implies that models of human motion perception based on Fourier decomposition need to be revised. The validity of one widely studied class of microbalanced stimuli, contrast modulated noise, has recently been questioned. It has been p...

متن کامل

Binocular combination of luminance profiles

We develop and test a new two-dimensional model for binocular combination of the two eyes' luminance profiles. For first-order stimuli, the model assumes that one eye's luminance profile first goes through a luminance compressor, receives gain-control and gain-enhancement from the other eye, and then linearly combines the other eye's output profile. For second-order stimuli, rectification is ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2015